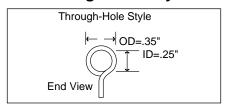


HE SERIES COMPACT HELICAL **ANTENNAS**

ANT-315-HE**, ANT-418-HE** ANT-433-HE**, ANT-916-HE**

> ** = SM (SURFACE-MOUNT) TH (THROUGH-HOLE)

> > .25"


DESCRIPTION

In low-cost RF applications a whip antenna generally provides the best overall performance. In many cases, however, the use of a whip is not practical for cost or cosmetic reasons. In instances where a designer is looking for a blend of easy concealment, low cost and good performance, a helical antenna is usually the optimum choice. The HE series from Linx delivers exceptional performance and ease of use, while maintaining a cost factor appropriate for high-volume applications. Linx helical antennas are precisely wound and matched to provide the lowest possible SWR at the operational frequency. In addition, the antenna diameter and inter-coil spacing are optimized to provide a wider than typical bandwidth.

FEATURES

- Compact design for easy concealment
- High-grade phosphoric bronze construction
- Precision wound for consistent performance
- Surface-mount or through-hole styles
- Low physical impedance
- Very low cost in volume

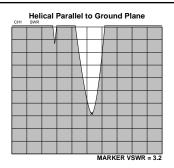
Through-Hole Style Rugged construction

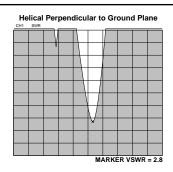
Surface-Mount Style

→ OD=.35"

ID=.25"

Wire Diameter 0.050"

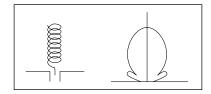

Surface Style

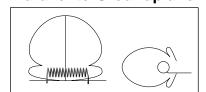

End Views

ORDERING INFORMATION

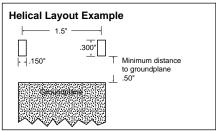
PART #	DESCRIPTION	PART #	DESCRIPTION
ANT-315-HESM	SURFACE-MOUNT 315 MHZ	ANT-315-HETH	THROUGH-HOLE 315 MHz
ANT-418-HESM	SURFACE-MOUNT 418 MHZ	ANT-418-HETH	THROUGH-HOLE 418 MHz
ANT-433-HESM	SURFACE-MOUNT 433 MHZ	ANT-433-HETH	THROUGH-HOLE 433 MHz
ANT-916-HESM	SURFACE-MOUNT 916 MHZ	ANT-916-HETH	THROUGH-HOLE 916 MHz

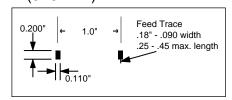
PERFORMANCE CHARACTERISTICS

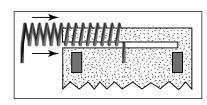



RADIATION PATTERN

HE Series antenna patterns have not been fully characterized as of this time. The patterns below illustrate typical patterns for antennas of this


Perpendicular to Groundplane


Parallel to Groundplane


Suggested Board Layout

(916MHz)

For Applications Subject to Vibration or Shock

